3.5.62 \(\int \frac {x^{7/2}}{(a+b x)^3} \, dx\)

Optimal. Leaf size=95 \[ \frac {35 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}}-\frac {35 a \sqrt {x}}{4 b^4}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}-\frac {x^{7/2}}{2 b (a+b x)^2}+\frac {35 x^{3/2}}{12 b^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {47, 50, 63, 205} \begin {gather*} \frac {35 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}-\frac {35 a \sqrt {x}}{4 b^4}-\frac {x^{7/2}}{2 b (a+b x)^2}+\frac {35 x^{3/2}}{12 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(a + b*x)^3,x]

[Out]

(-35*a*Sqrt[x])/(4*b^4) + (35*x^(3/2))/(12*b^3) - x^(7/2)/(2*b*(a + b*x)^2) - (7*x^(5/2))/(4*b^2*(a + b*x)) +
(35*a^(3/2)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/(4*b^(9/2))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin {align*} \int \frac {x^{7/2}}{(a+b x)^3} \, dx &=-\frac {x^{7/2}}{2 b (a+b x)^2}+\frac {7 \int \frac {x^{5/2}}{(a+b x)^2} \, dx}{4 b}\\ &=-\frac {x^{7/2}}{2 b (a+b x)^2}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}+\frac {35 \int \frac {x^{3/2}}{a+b x} \, dx}{8 b^2}\\ &=\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a+b x)^2}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}-\frac {(35 a) \int \frac {\sqrt {x}}{a+b x} \, dx}{8 b^3}\\ &=-\frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a+b x)^2}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}+\frac {\left (35 a^2\right ) \int \frac {1}{\sqrt {x} (a+b x)} \, dx}{8 b^4}\\ &=-\frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a+b x)^2}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}+\frac {\left (35 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\sqrt {x}\right )}{4 b^4}\\ &=-\frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a+b x)^2}-\frac {7 x^{5/2}}{4 b^2 (a+b x)}+\frac {35 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.00, size = 27, normalized size = 0.28 \begin {gather*} \frac {2 x^{9/2} \, _2F_1\left (3,\frac {9}{2};\frac {11}{2};-\frac {b x}{a}\right )}{9 a^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(a + b*x)^3,x]

[Out]

(2*x^(9/2)*Hypergeometric2F1[3, 9/2, 11/2, -((b*x)/a)])/(9*a^3)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.13, size = 89, normalized size = 0.94 \begin {gather*} \frac {35 a^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}}+\frac {-105 a^3 \sqrt {x}-175 a^2 b x^{3/2}-56 a b^2 x^{5/2}+8 b^3 x^{7/2}}{12 b^4 (a+b x)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^(7/2)/(a + b*x)^3,x]

[Out]

(-105*a^3*Sqrt[x] - 175*a^2*b*x^(3/2) - 56*a*b^2*x^(5/2) + 8*b^3*x^(7/2))/(12*b^4*(a + b*x)^2) + (35*a^(3/2)*A
rcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/(4*b^(9/2))

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 227, normalized size = 2.39 \begin {gather*} \left [\frac {105 \, {\left (a b^{2} x^{2} + 2 \, a^{2} b x + a^{3}\right )} \sqrt {-\frac {a}{b}} \log \left (\frac {b x + 2 \, b \sqrt {x} \sqrt {-\frac {a}{b}} - a}{b x + a}\right ) + 2 \, {\left (8 \, b^{3} x^{3} - 56 \, a b^{2} x^{2} - 175 \, a^{2} b x - 105 \, a^{3}\right )} \sqrt {x}}{24 \, {\left (b^{6} x^{2} + 2 \, a b^{5} x + a^{2} b^{4}\right )}}, \frac {105 \, {\left (a b^{2} x^{2} + 2 \, a^{2} b x + a^{3}\right )} \sqrt {\frac {a}{b}} \arctan \left (\frac {b \sqrt {x} \sqrt {\frac {a}{b}}}{a}\right ) + {\left (8 \, b^{3} x^{3} - 56 \, a b^{2} x^{2} - 175 \, a^{2} b x - 105 \, a^{3}\right )} \sqrt {x}}{12 \, {\left (b^{6} x^{2} + 2 \, a b^{5} x + a^{2} b^{4}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x+a)^3,x, algorithm="fricas")

[Out]

[1/24*(105*(a*b^2*x^2 + 2*a^2*b*x + a^3)*sqrt(-a/b)*log((b*x + 2*b*sqrt(x)*sqrt(-a/b) - a)/(b*x + a)) + 2*(8*b
^3*x^3 - 56*a*b^2*x^2 - 175*a^2*b*x - 105*a^3)*sqrt(x))/(b^6*x^2 + 2*a*b^5*x + a^2*b^4), 1/12*(105*(a*b^2*x^2
+ 2*a^2*b*x + a^3)*sqrt(a/b)*arctan(b*sqrt(x)*sqrt(a/b)/a) + (8*b^3*x^3 - 56*a*b^2*x^2 - 175*a^2*b*x - 105*a^3
)*sqrt(x))/(b^6*x^2 + 2*a*b^5*x + a^2*b^4)]

________________________________________________________________________________________

giac [A]  time = 1.03, size = 77, normalized size = 0.81 \begin {gather*} \frac {35 \, a^{2} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} b^{4}} - \frac {13 \, a^{2} b x^{\frac {3}{2}} + 11 \, a^{3} \sqrt {x}}{4 \, {\left (b x + a\right )}^{2} b^{4}} + \frac {2 \, {\left (b^{6} x^{\frac {3}{2}} - 9 \, a b^{5} \sqrt {x}\right )}}{3 \, b^{9}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x+a)^3,x, algorithm="giac")

[Out]

35/4*a^2*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^4) - 1/4*(13*a^2*b*x^(3/2) + 11*a^3*sqrt(x))/((b*x + a)^2*b^
4) + 2/3*(b^6*x^(3/2) - 9*a*b^5*sqrt(x))/b^9

________________________________________________________________________________________

maple [A]  time = 0.02, size = 79, normalized size = 0.83 \begin {gather*} -\frac {13 a^{2} x^{\frac {3}{2}}}{4 \left (b x +a \right )^{2} b^{3}}-\frac {11 a^{3} \sqrt {x}}{4 \left (b x +a \right )^{2} b^{4}}+\frac {35 a^{2} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \sqrt {a b}\, b^{4}}+\frac {2 x^{\frac {3}{2}}}{3 b^{3}}-\frac {6 a \sqrt {x}}{b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(b*x+a)^3,x)

[Out]

2/3*x^(3/2)/b^3-6*a*x^(1/2)/b^4-13/4/b^3*a^2/(b*x+a)^2*x^(3/2)-11/4/b^4*a^3/(b*x+a)^2*x^(1/2)+35/4/b^4*a^2/(a*
b)^(1/2)*arctan(1/(a*b)^(1/2)*b*x^(1/2))

________________________________________________________________________________________

maxima [A]  time = 3.07, size = 86, normalized size = 0.91 \begin {gather*} -\frac {13 \, a^{2} b x^{\frac {3}{2}} + 11 \, a^{3} \sqrt {x}}{4 \, {\left (b^{6} x^{2} + 2 \, a b^{5} x + a^{2} b^{4}\right )}} + \frac {35 \, a^{2} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} b^{4}} + \frac {2 \, {\left (b x^{\frac {3}{2}} - 9 \, a \sqrt {x}\right )}}{3 \, b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x+a)^3,x, algorithm="maxima")

[Out]

-1/4*(13*a^2*b*x^(3/2) + 11*a^3*sqrt(x))/(b^6*x^2 + 2*a*b^5*x + a^2*b^4) + 35/4*a^2*arctan(b*sqrt(x)/sqrt(a*b)
)/(sqrt(a*b)*b^4) + 2/3*(b*x^(3/2) - 9*a*sqrt(x))/b^4

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 81, normalized size = 0.85 \begin {gather*} \frac {2\,x^{3/2}}{3\,b^3}-\frac {\frac {11\,a^3\,\sqrt {x}}{4}+\frac {13\,a^2\,b\,x^{3/2}}{4}}{a^2\,b^4+2\,a\,b^5\,x+b^6\,x^2}-\frac {6\,a\,\sqrt {x}}{b^4}+\frac {35\,a^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {x}}{\sqrt {a}}\right )}{4\,b^{9/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(a + b*x)^3,x)

[Out]

(2*x^(3/2))/(3*b^3) - ((11*a^3*x^(1/2))/4 + (13*a^2*b*x^(3/2))/4)/(a^2*b^4 + b^6*x^2 + 2*a*b^5*x) - (6*a*x^(1/
2))/b^4 + (35*a^(3/2)*atan((b^(1/2)*x^(1/2))/a^(1/2)))/(4*b^(9/2))

________________________________________________________________________________________

sympy [A]  time = 135.24, size = 906, normalized size = 9.54 \begin {gather*} \begin {cases} \tilde {\infty } x^{\frac {3}{2}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {9}{2}}}{9 a^{3}} & \text {for}\: b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 b^{3}} & \text {for}\: a = 0 \\- \frac {210 i a^{\frac {7}{2}} b \sqrt {x} \sqrt {\frac {1}{b}}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} - \frac {350 i a^{\frac {5}{2}} b^{2} x^{\frac {3}{2}} \sqrt {\frac {1}{b}}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} - \frac {112 i a^{\frac {3}{2}} b^{3} x^{\frac {5}{2}} \sqrt {\frac {1}{b}}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} + \frac {16 i \sqrt {a} b^{4} x^{\frac {7}{2}} \sqrt {\frac {1}{b}}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} + \frac {105 a^{4} \log {\left (- i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} - \frac {105 a^{4} \log {\left (i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} + \frac {210 a^{3} b x \log {\left (- i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} - \frac {210 a^{3} b x \log {\left (i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} + \frac {105 a^{2} b^{2} x^{2} \log {\left (- i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} - \frac {105 a^{2} b^{2} x^{2} \log {\left (i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{24 i a^{\frac {5}{2}} b^{5} \sqrt {\frac {1}{b}} + 48 i a^{\frac {3}{2}} b^{6} x \sqrt {\frac {1}{b}} + 24 i \sqrt {a} b^{7} x^{2} \sqrt {\frac {1}{b}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(b*x+a)**3,x)

[Out]

Piecewise((zoo*x**(3/2), Eq(a, 0) & Eq(b, 0)), (2*x**(9/2)/(9*a**3), Eq(b, 0)), (2*x**(3/2)/(3*b**3), Eq(a, 0)
), (-210*I*a**(7/2)*b*sqrt(x)*sqrt(1/b)/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*
sqrt(a)*b**7*x**2*sqrt(1/b)) - 350*I*a**(5/2)*b**2*x**(3/2)*sqrt(1/b)/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**
(3/2)*b**6*x*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt(1/b)) - 112*I*a**(3/2)*b**3*x**(5/2)*sqrt(1/b)/(24*I*a**(
5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt(1/b)) + 16*I*sqrt(a)*b**4*x
**(7/2)*sqrt(1/b)/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt
(1/b)) + 105*a**4*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqr
t(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt(1/b)) - 105*a**4*log(I*sqrt(a)*sqrt(1/b) + sqrt(x))/(24*I*a**(5/2)*b**5*s
qrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt(1/b)) + 210*a**3*b*x*log(-I*sqrt(a)*sq
rt(1/b) + sqrt(x))/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqr
t(1/b)) - 210*a**3*b*x*log(I*sqrt(a)*sqrt(1/b) + sqrt(x))/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x
*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt(1/b)) + 105*a**2*b**2*x**2*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(24*I*
a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*sqrt(a)*b**7*x**2*sqrt(1/b)) - 105*a**2*b**2*x
**2*log(I*sqrt(a)*sqrt(1/b) + sqrt(x))/(24*I*a**(5/2)*b**5*sqrt(1/b) + 48*I*a**(3/2)*b**6*x*sqrt(1/b) + 24*I*s
qrt(a)*b**7*x**2*sqrt(1/b)), True))

________________________________________________________________________________________